Search results

Search for "n–n heterojunction" in Full Text gives 2 result(s) in Beilstein Journal of Nanotechnology.

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • an nn heterojunction at the ZnO/SiC interface. Keywords: electrospinning; high temperature gas sensor; nn heterojunction; ZnO/SiC nanocomposite; Introduction The risk of air pollution is growing due to the development of new technologies in the chemical, metallurgical and food industries, the use
  • interpreted in the context of the assumption of the formation of an nn heterojunction at the ZnO/SiC interface, resulting in electron transfer from SiC to ZnO. The increase in the concentration of electrons in the near-surface layer of ZnO leads to an increase in the concentration of chemisorbed oxygen on
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • an nn heterojunction, b) electron transfer from a TiO2 to a SnO2 grain providing active gas adsorption sites. EF: Fermi energy, EVB: valence band maximum energy, ECB: conduction band minimum energy, Eg: energy band gap, e−: electron, O−: singly ionized oxygen adatom. Comparison between XRD patterns
PDF
Album
Full Research Paper
Published 12 Jan 2017
Other Beilstein-Institut Open Science Activities